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Abstract

A closed form elastodynamic solution for the thermal shock stresses due to heat transfer into/from a medium (e.g.
fluid) at a constant temperature in a thick orthotropic cylindrical shell is developed. Temperature distribution varies
with time and space throughout the shell thickness. The mathematical formulation is done by the three-dimensional
linear dynamic elasticity approach and the use of appropriate integral transforms such as the finite Hankel transform
and the Laplace transform. No restrictions are imposed regarding the shell thickness in the formulation. The present
case, which is more practical and general, is an extension of the case of uniform heating previously studied by the
authors. Numerical results show the role of the stress wave propagation and reflection in conjunction with the thermal
and material orthotropy. These have a significant influence on the dynamic thermal shock stresses through the shell
thickness. Results present the complete dynamic response of thermal shock stresses using realistic inertia parameters
and material properties in a thick orthotropic cylindrical shell made out of glass/epoxy. © 2001 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

The thermally excited mechanical response of cylindrical shell composite structures is of interest in
various applications of spacecraft, space station, aircraft, ship, submarine and nuclear plant technology as
well as chemical pipes. These structures can be exposed to thermal environments with a rapidly changing
temperature. Information for the thermal stress analysis is necessary in the safe design of these types of
structural applications. In the case of rapidly changing temperature, dynamic thermoelasticity should be
considered, since the inertia would play a nonnegligible role on the thermal deformations which would
result in these elastic bodies.

Dynamic thermoelastic problems have been studied, since several decades, in infinite or semi-infinite
elastic bodies and in hollow spherical shells. In particular, thermal shock stresses in an elastic infinite
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medium with a spherical cavity were studied by Sternberg and Chakravorty (1959) by the method of La-
place transforms. Later, the same method of Laplace transforms was applied to the thermal stress wave
propagation problem under rapid loading in hollow spheres by Tsui and Kraus (1965). Another early work
by Zaker (1969) presented a linear dynamic thermoelasticity study for the thermal shock stresses using the
method of image. These studies included the heat conduction equation for the transient temperature dis-
tribution. These early works provide useful fundamental insights and understanding of the distribution of
thermal shock stresses and the stress wave propagation through the wall of structures. Hata (1991) applied
the Ray theory to the thermal shock problem using the decomposed displacement potentials in a hollow
sphere under rapid uniform heating without considering the transient temperature distribution. Recently,
Wang (1995) studied the thermal shock stress problem in an isotropic hollow cylinder by using integral
transforms such as the finite Hankel transform and the Laplace transform. Such applications of the finite
Hankel transform and the Laplace transform to boundary value problems in a hollow cylinder were
originally developed by Cinelli (1965).

As far as static thermal stress analyses by the elasticity approach for orthotropic cylindrical shells, a
solution was presented by Kardomateas (1989, 1990) for the transient thermal stresses in a filament wound
orthotropic thick cylindrical shell. Similar works without the transient temperature were presented by Hyer
and Cooper (1986) for circumferentially varying loading and by Yuan (1993) using potential functions.
Although these researchers have studied this configuration, the investigations are mostly confined to the
static analysis, i.e., the inertia term is not considered. On the contrary, Cho et al. (1998) included the inertia
term and studied the elastodynamic thermal shock stresses due to uniform heating in a thick orthotropic
cylindrical shell using integral transforms. Also, a numerical solution in plain strain condition is reported
by Sumi and Ito (1993) for thermal shock stresses in orthotropic cylindrical or spherical shells using the
finite difference method. In their work, numerical examples were presented using an inertia parameter
which does not seem, however, to represent typical materials. The inertia parameter is important because it
determines the wave propagation time in the wall.

In general, limited investigations of thermoelastic waves through the thickness of composite cylindrical
shells exist, even though several linear dynamic thermoelastic problems have been studied for isotropy. In
particular, there have not been any elastodynamic closed form solutions yet reported for thermal shock
stresses in orthotropic thick cylindrical shells considering the transient temperature through the thickness.
This work, which extends the previous work of the authors (Cho et al., 1998), presents a three-dimensional
elastodynamic solution for the thermal shock stresses in the wall of an orthotropic thick cylindrical shell.
The transient temperature distribution can occur due to heat conduction through the shell thickness. The
loading circumstance of a constant temperature suddenly applied at one surface boundary and spreading
over the thickness can be easily seen in many industrial applications. The proper usage of integral trans-
forms such as the finite Hankel transform and the Laplace transform for the dynamic part of the governing
equations leads to a closed form elastodynamic solution.

2. Formulation

Consider a hollow cylinder subjected to a temperature distribution with or without external pressure.
The inner and outer radii are denoted by r; and r,, respectively. We denote by r, the radial, 0, the cir-
cumferential, and z, the axial coordinate. The hollow cylinder is assumed to have zero initial temperature.
The temperature distribution is obtained by solving the heat conduction equation given by

oT(r,t) PT(r,t) 10T(r,t)
= - <r<
Py K 3,2 +r & | (m<r<nm, t>0), (1)
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where K is the thermal diffusivity of the composite in the r direction.
The initial and general boundary conditions are

T(r,0) =0 atr <r<n, (2a)
oT

hy é’;, t) = /’lzT(Fl, l) =h; (t > 0), (2b)
oT (r,t

hy é:’ ) repy TIT(r2,t) = b5 (t>0), (2¢)

where Ay, hy, h{ and hj are constants which may be positive or zero and /3 and Aj are also constants. By
choice of these constants, the general results include all combinations of constant temperature, constant
heat flux, zero heat flux, or heat convection to a different medium at either surface. The distribution of
temperature 7'(r, ) in the wall is given by Carslaw and Jaeger (1959) for the hollow cylinder in terms of the
Bessel functions of the first and second kind J,(x) and Y,(x), as follows:

T(l", I) = d] —+ d2 ln(l"z/}") + d3 h’l(r/l”]) + Ze_K“”Z’[d4nJ0(rocn) —+ dsnY()(l"O(n)], (3)

o0
n=1

where d|, d,,ds, ds, and ds, are constants (dy, and ds, are shown in Appendix A). Also, o, are the positive
roots of the following transcendental equation:

VZIO(JI (V]OC) + tho(VIOC)] [h’l‘och (l"zOC) — h;Yo(I”zfx)] — [lel(ﬁO() + tho(l"]OC)] X [l’lTOﬁJl (7”206) — h;J()(}"z)] =0.
(4)
Since there is only radial dependence of the temperature field (3), the hoop displacements are zero and

the stresses and strains are independent of 0. Thus, the thermoelastic stress—strain relations for the or-
thotropic body are

[o, ] fceip cp c3 0 0 07Té€r— o, AT T
0o cip ¢ 3 0 0 O €gp — ogAT
Oz | _ |1 o cn 0 0 0 €. — AT (s5)
T 0 0 0 cy 0 O Vo ’
Tys 0 0 0 0 ¢5 O Vs
LT L0 0 0 0 0 wecedl V00 ]

where ¢;; are the elastic constants and o; are the thermal expansion coefficients (1, 2, and 3 represent r, 0,
and z, respectively.) The geometry of the shell is assumed to be axisymmetric. Since the temperature does
not depend on the axial coordinate, it is assumed that the stresses are independent of z. In addition to the
constitutive equations (5), the elastic response of the hollow cylinder must satisfy the equilibrium equations.
Only one equilibrium elastodynamic equation remains, since 7y, = 7, = 7,9 = 0.

00,  0p—0g  Ou(r,0,z,1)

or r © or ' (©)
For the problem without the thermal effects, the following expressions for the displacement field were
derived by Lekhnitskii (1981).

u, = U(r,t) + z(w,cos 0 — w, sin 0) + uy cos 0 + vy sin 0, (7a)

ug = —z(w, sin 0 + w, cos 0) + w,r — uy sin 0 + vy cos 0, (7b)



2772 H. Cho, G.A. Kardomateas | International Journal of Solids and Structures 38 (2001) 2769-2788
u, = zf (t) — r(wy cos 0 — w, sin 0) + wy, (7c)

where the function U(r,t) represents the radial displacement accompanied by deformation. The constants
ug, Vo, Wo, Wy, Wy, and w, denote the rigid body translation and rotation along the x, y, and z directions in the
Cartesian coordinate system, respectively. The time-dependent parameter f(¢) is obtained from boundary
conditions.

The strains are expressed in terms of the displacements as follows:

_ oU(r,t) _U(r,e) e. = f(1), (8a)

€go =
or ro

€rr

Vor = Ve = Vro = 0. (8b)

Substituting Egs. (5) and (8) into the equilibrium equation (6), gives the following equation of thermal
elastodynamics for the displacement U(r, ¢):

oT(r, 1) T(r,t) f() ?U(r,1)

PU(r,t) 10U(rt)] cxn
1 + - -

U(r,t) = — S\ 2y 9
¢ or? ro or 72 (r0) = or 4 r +(en —en) r tho orr ©)
where the constants ¢; and ¢, are
q1 = C110% + €120 + €130, (10a)
g2 = (c11 — 1) + (c12 — exm)ag + (c13 — €23) 0%, (10b)

and the initial conditions and the boundary conditions from external tractions o,.(r;,t) = ¢;(¢) at v, = ry,
are

U(r,0) = 0, 6Uért, 0_ (11a)
e aUérr"’ Dy e Y00 Lo = T ) = (0. (11b)
The axial force P.(¢) is given by
P(t) = /rz 0. (r,t)2nrdr, (12)
"
or, by using Egs. (5) and (8)
P(t) = / i {031 aUa(:’ )t ex U(:’ D 4 ewf(t) — gsT(r )| 2nrdr, (13)

where g3 = ¢310, + €309 + €330
Consider first the quasi-static thermoelastic equation given as follows:

FUgy(r,t)  10Uq(r,t)] cm
cu [ or? +; or ] _rTUSt(r’t) —1

laT(r,t)+q2T(r,t)+(cz37C13)&. (14)

or r r

Notice that the absence of the inertia term (the last term in Eq. (9)). The associated initial and boundary
conditions are given as in Egs. (11)—(13) with Uy substituted in place of U.

Assume that the quasi-static thermoelastic radial displacement can be decomposed into a steady and a
transient part as
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o0

Ua(r, 1) = Us(r) + > Ra(r) Q0 (), (15)

n=1

where Q,(¢) = e %%’ for convenience, and set f(¢) in the form
FO =+ S S Q0. (16)
n=1

Expression (15), if it is substituted into Eq. (14), gives the following two inhomogeneous ordinary dif-
ferential equations of second order for the displacements U,(r) and R,(r):

*U, 1 0U, dy — db) + qod) + — o 1
Cll|: ) Z(F) t (r)] _0_222U0<”) = (s = &) ¥ 4ot + (e = en)f. + qd> n(ra/r) + q2d5
r r or r r
" ln(r/rl)7 (17)
r
and forn=1,... 00,
O*R,(r 1 0R,(r c . Jo(ro,
i { 6r2( )+; 65 )} —ﬁRn(V) = (e — 013)J;+d4n {92 O(V ) —(]10<nJ1(1”0€n)}
Yo (ro,
+d5n |:q2 0(r ) _qlanY](rOCn)]' (18)

In this transient thermoelasticity problem, the displacement field was obtained by Kardomateas (1989,
1990). Specifically, the solution U,(r) of the inhomogeneous differential equation (17) is given by

Us(r) = Gior™ + Gyor™ BT Cl3f0r+ Uy (r), (19)
Ci1 — €
where
Us(r) = [dor + qadorIn(ry /¥) + qadsrIn(r/ry)). (20)

Ci1 — €2
Also, 11, = \/cxn/cpr and the constant d, is
26116]2(013 - dz)

% =0l =~ &)+ ad - (c11 — e2)

The solution R, (r) of the inhomogeneous differential equation (18) is expressed as

— (13

Ry(r) = G + G + 2B L R (1), (21)
Ci1 —C2
where
2q,ds o 2
R =B S LU | 2 B k3 2 B, 2k +3 22
o) =0 ey /D) 2 B e 2 B .

with By, defined as

_ dungr +dsi(2/7)(q1 +792) 4engads,

By
! (011 - 6‘22) TC(CU - 6‘22) ’

and B, and B,,; provided in Appendix B.
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The definition of series expansion for the Bessel functions cannot be used for large arguments. Hence,
the particular solution of Eq. (18) for large arguments is needed. This solution can be achieved by using the
Hankel asymptotic expansions of the Bessel function of the first and second kind of arbitrary order v.
Employing the following substitutions:

p=ron  R(p)=R,(r), (24)

the equation for n = 1,..., 00 can be expressed by using the asymptotic definitions of the Bessel functions
as following:

P LRI EPE A T M
X (q2 Sin p — @y 4p oS p + azip? sin p) + (da, — ds,)
X (q2c08p — aipsinp + azgp” cos p)], (25)
where
4k + 1 16k 16k
kZ(I14k71—QZ(4k_1)27 az,kzmy (26)
and (k) is defined as follows:
Yy =12.3.52 .. 4k — 1), k=1, 00. (27)
The solution to this equation is obtained as
R (p ip o 2 cos p 4 sZ,Ip*”H/2 sin p +p,’j}2p*2"*3/2 cos p + szﬁzp*%%/2 sin p. (28)
=0

The coeflicients p} |, s} 1> Pia and s} , are determined from recursive formulas as in (Kardomateas, 1990)
by considering the terms in the sum that contribute to the terms p=%*~1/2cos p, p=2~1/2sin p, p2=32cos p
and p~%*32psinp on the right-hand side of Eq. (25). Solution (28) is a particular solution of Eq. (25)
derived by considering the Hankel asymptotic expansions of the Bessel functions for values of the argu-
ments p =ra, = p, = 18.0, i.e. the Hankel asymptotic expansions domain, whereas the solution R:(r),
which will be denoted by R*((r), had been derived based on series expansions for the Bessel functions, for
values of the argument p < p,., i.e. the Bessel functions domain. Since for a given root «,, the argument p
ranges from r o, to r,a,, there may be a transition point from one solution to the other for R’ (r) in ex-
pression (21). Both solutions are particular ones but may be different. Thus, at that transition point, a
homogeneous solution term should be added to Eq. (28) so that

R (p) = hiap™ + haup™ + R (p), (29)
where 4, and Ay, are determined from the condition of equal value and slope at the transition point:
Ry (p) = Rys(py/ow), Ry (p) = Rys(py /o) (30)

Now, turning to the total displacement for the linear dynamic thermoelasticity, the general solution of
the governing equation (9) is

U(rvt):Ust(rat)+Ud(rvt)> (31)

where Uy(r,t) represents the quasi-static thermoelastic radial displacement and Uy(r,¢) denotes the dy-
namic radial displacement. Using Eq. (9) with associated initial and boundary conditions and the above
definition, the following elastodynamic equation in terms of the displacement is obtained:
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asz(l" t) 1 6Ud(r l) (%) 62Ust(r l) asz(}” t)
) - 9 22 _ s s 2
cn or? roor r2 Ualrs1) = po or? or? (32)
with the initial conditions
oUy4(r,0
U0y =0, Y0 (33)
ot
and the boundary conditions of traction-free surfaces of the hollow cylinder
oUy(r;,t Ug(r, t .
oy Gelrnt) D (34)
or 7
as well as the condition of no axial force at the ends
2 oUy(r,t Uq(r, ¢
0= / |:C31 d(r, ) +c3 d(r, )}2nrdr. (35)
" or r;
Rewriting the equation of dynamic elasticity (32),
QPUqy(r,t)  10U4(r,t) V? 1 [Q?Uq(r,t)  Q*Uqy(r,t)
or? + roor P2 Ualryt) = & { or? + or? ' (36)

where v = y/cyp/c11. Therefore, v = A; and also the wave speed through the thickness in the cylindrical shell
is defined as ¢ = \/c11/p,-

From now on, the procedure for solving the dynamic elasticity equation (36) is needed. The general
solution after setting Uy = 0, is obtained by

Ua(r,t) = A(t)J,(Er) + B() Y, (&r), (37)
where the Bessel function of the second kind of order v is defined as

Ju(ér)cosvmt — J_,(&r)
sin v

Y, (ér) =

Notice that when the order v is an integer n, ¥, = lim,_, ¥,(&r). By using the boundary conditions (34),
Uy(r,t) can be written in the eigenfunction series

Ud(rvt) :ZAi(t)DV(éir)a i= 1,2,...,00, (39)

: (38)

where the eigenfunctions are in the form

Dy(&ir) = 4 (&r) Yy = Yy (&ir) o (40)
If v = n, the eigenfunctions are in the form

D, (&ir) = Ju(&r) Yy = Y, (&ir) o (41)
In these formulas, &; are the positive roots of the transcendental equation

J Yy — Y, =0, (42)

where
Jo = EJ(Er) + dy(En), Jp = EJU(Er) + had, (&), (43a)
Y, =&Y (&) + MY (&m), Yo = GY[(Gm) + haY(Sir2) (43b)

and the constants #; are defined by
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hy =2 hy = 12 (44)

, .
ricu mnCl

In the finite range of the elastic body, 4,(¢) can be obtained as

[ rUa(r, 0D, (&) dr

S GFTYEE )
The finite Hankel transform for the dynamic displacement (39) can be written as:
TG ) = / " U, D, (&) dr (46)
r
Then, the inverse of the finite Hankel transform is obtained as
Uy = 3 0D ) )

; N

where N(&;) = :12 r[D,(&7)) dr, is a normalizing factor and is always positive. By the definition of the finite
Hankel transform, the transformation of Eq. (32) is given as

% aUd(rz,t) + hz Ud(rz,l) 7% 6Ud(r1,t) +h1 Ud(}"l,t)
J, or r T or r

} _ 2a(.

EZ

1 [aza:@,-, ), Fia(E ] | (48)

or? or?

Since Uy(r, t) satisfies the homogeneous boundary conditions (34) at each surface, the first two terms of
the left-hand side of Eq. (48) should vanish. Thus, the transformed equation becomes

1 [azag(g,.,t) +azﬁ;(f,~,t)}

—&ua(&n1) (49)

T2 or o

Using the Laplace transform, denoted by #g", with the zero initial conditions, the above equation be-
comes

—2 £2
—~L —~L c G L
u 5HS) = —ug HS)+———u »S), 50
) = TG + T ) (50)

and subsequently, using the inverse Laplace transform, we obtain the following expression:
ug (&, t) = —ug (&, 1) + c&sinedit x ug (&) (51)

Since Uy (r;,¢) is already known, the finite Hankel transform of Ug(r;, ), denoted by ug (&;, ¢), is defined
as

r
T(en) = [ rUr DG dr (52)
Then, the finite Hankel transform of the thermally induced displacement is
E;(iht) = ﬁo(éi)+zﬁn(éi)gtz(t)v (53)
n=1

where, by definition, the finite Hankel transforms of U,(r) and R,(r) are
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= C23 — C13

Uo(&) = Gioli (&) + Gabh (&) + fo

BE) +dob(&) +— P2 ey 2B ey (s

Ci1 —C» Ci1 —C» Ci1 —C»

Forn=1, o0,

Ru(&) = Giuli (&) + Gauba(&) + £ 213 (E) + Boaly (&) + B Io(E) + > Buahn(&) + Bauds (&),
k=0

Ci1 —Cn
(55)

In the large argument range, the finite Hankel transform should be evaluated by using solution (28) and
(29), then

Ru(&) = (Guu + o) (&) + (Gon + a2 )B(E) + f 2B p(E) + S pl dau (&)
k=0

Ci1 — €2
+ el (&) + piatsi(Gi) + st lor (&) (56)
In order to evaluate the above integral transforms the following integrals are needed:
r r
]l(éi) = / rv+1Dv(éir) drv ]2(61) = / V_H—le(gyir) dl”. (57)
r r
From the recurrence formulas d[z""'J,,(z)]/dz = 2", (z) and d[z7""J,_1(z)]/dz = —z7""1J,(2), we can

easily calculate the finite Hankel transforms /; and . The finite Hankel transforms of arbitrary functions
can be obtained by integrating by parts and using the series expansion form of the Bessel functions for small
arguments and/or a numerical integration. In this study, the following transforms are needed:

L(&) = / 2 ?Dy(Er)dr,  L(&) = / P In(ry/r)Dy(&r)dr, (58)
(&) = / SR InG/mDER (&) = / " 2 in(ra, 2)Dy (&) dr, (59)
Iul&) = / " A I, /)DL (Er) A, Tyl ) = / " 24D, () dr. (60)
For large arguments, in terms of «,, the finite Hankel transforms are
Tow (&) = / ” r(ra) 12 cos(ra, /2)Dy (&) dr, (61)
L (&) = / r(ra) 7 sin(ra, /2) Dy (E) dr, (62)
Ispue (&) = / i r(ro) 7 cos(ra, /2)Dy (&) dr, (63)
Loy (&) = /’2 ”(”%:)72]‘73/2 sin(ra, /2)D, (&7) dr. (64)

The numerical integration cannot be avoided for the evaluation of these integral transforms. It can be
noted that the numerical Hankel transform is always possible for arbitrary functions.
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Combining all expressions, the finite Hankel transform of the dynamic component of the displacement,
from Eq. (51), is

wa(ént) = —Uo(¢ >cosc¢t+ZR,, ) [eéh(0) - ()], (65)
where the convolution integral Iy(¢) f Q,(1)siné,(t — t)dr and Q,(r) = e X" as described earlier.

Substituting uq(&;, ¢) into Eq. (47), the general solution of the dynamic elasticity part of the equation of
motion is obtained as

Ud(r,t):ZD]\‘}(é’;){ U(é)cosciH—ZR [cgzo() Q(t)}}. (66)

Therefore, the general elastodynamic solution for the thermal shock problem of orthotropic thick shells
is found to be

o0

U(r,t) = Us(r) + > Ry

n=1

{ (é)coscét+ZR { I(t)—Q,,(t)}}.
(67)

After obtaining the displacement field, the elastodynamic thermal shock stresses can be determined from
the strain—displacement and the orthotropic stress—strain relations. In particular, the radial stress is

ouU(r,t U
), Ul
or

The circumferential stress is given by

oU (r,¢) e U(r,?)

o, (ryt) = +enf(t) —qiT(r,t). (68)

ap(r,t) = ci o 2 + enf (t) — gaT(r,1), (69)
and the axial stress is given by
oU(r,t U(r,t
O'ZZ(I", t) = C3] a(r ) + C3p (r ) + C33f(l> — Q3T(l’, l), (70)

where g,o = ¢310, + ¢ + cp30.. Using Egs. (3) and (67), the following expression can be written, in lieu of
Eq. (68)

0., (r,t) = GoBi + GBiz + foBis + Bis + Z GiuBiin + G2,B1on + fuBi3n + Bian, (71)

n=1

where B;; and By, are provided in Appendix D. Similar expressions can be obtained for g4y and o...

The unknown constants, can now be determined from the boundary conditions. We assume that no
external tractions exist on the boundaries. Then, the conditions on the bounding surfaces (at r; and r;) can
be written in the following form:

O-rr(rlvt) :Tr(')(riat) :Trz(rlvt) :07 i= 172 (72)

Only a condition for the stress o,., written as Eq. (71), is not satisfied identically. Substituting Eq. (67)
into Eq. (72), the following two linear equations in terms of the unknown constants Gy, Gyy and fp, are
obtained:
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1 — Jo— Cryy — C
Gro(eni + )i ™ + Gu(enda + ) + fo {013 +% (en + 012)]
11— C»
= —cnUl(r;) — %U:(r,») +qildi + daIn(ry/r;) + dyIn(r;/r)], i=1,2. (73)

1

Similarly, for the other set of unknown constants Gy,, G,, and f,

_ dy— Cy3 — C
Gualen + )™ 4 Go(en + )™ + 1, [013 + %(011 + 012)}
11— Cn
= —cyRY(r) — %R;(r,») + qi[dando(ra) + dsy Yo(ra)],  i=1,2. (74)

1

The end condition of zero resultant axial force (13) gives the last set of equations that are needed to
determine the unknown constants Gyo, Gy and f

) 2 2 2 _ 2
C31Al + €3, 4 I+ C31Ay +C32 ) jo41 Jp+1 €3 €3 (r; —11)
Go—— (""" =" )+ Go————05" =i )+ fo| =——+es) =5

/L1+1 j.z—f—l Cl] —C» 2
* L) " * (}"% - r%)
= —en[rU; ()] = (e —en) | Us(r)dr+gqs|(di +do/2 — ds/z)T
r
In(r, /r
+ (dsr? — dﬁ)#}, (75)
and similarly for G,,, G,, and f,,
(c31d1 +C3) , s g+ (csida+¢32) , il o 33 — ¢ty (r3—r7)
n ) ) —-n G n S —r? n
1 ol (r 1)+ Gy o () )+ 611—sz+633 5
7 2 * dn
= —C3] [}"RZ(I”):I: — (632 — 613)/ Rn(l") d}" + Q3{ ogi [}"2.]] (}’20(,,) — I"]J] (I"]OC”H
r n
dSn
+O(7[}"2Y1(1"206,,) 7]"1}/1(1"106,,)] . (76)

The time-dependent terms in the boundary conditions (71) as given by the sets of linear algebraic
equations (72)—(75) automatically vanish since the boundary conditions (34) and (35) for the dynamic
elasticity part are homogeneous.

3. Results and discussion

The thermal shock stresses are obtained from this elastodynamic solution in an orthotropic thick cy-
lindrical shell. The finite Hankel transform and the Laplace transform are used for solving the dynamic
part. These integral transformations have been successfully applied to the problem without any inversion
difficulties. For the series sum of dynamic solution, the roots of the nonlinear equation (42) are used.
Numerical finite Hankel transformations for arbitrary functions are carried out by the Romberg’s inte-
gration algorithm.

For an illustrative example, the following information is used for a glass/epoxy circular cylinder of inner
radius ; = 20 mm and outer radius , = 40 mm, made by filament winding with the fibers oriented around
the circumference. The moduli in GNm~2 and Poisson’s ratios for the material are listed below, where 1
represents the radial (r) direction, 2 the circumferential (6) direction, and 3 the axial (z) direction
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El = E3 = 1987 E2 = 4'837 G12 = G23 = 8967
G31 = 619, Vip = V3 = 027, V31 = 0.60.

The thermal expansion coefficients are o, = o, = 15 x 107°°C™", 0y = 0.23 x 107°°C~". The thermal
diffusivity in the radial direction is K = 0.112 x 10~ m?s~!.

Assume that a temperature of 7, = 300°C above the reference is suddenly applied at » = r|, while there is
heat convection to the surrounding air at » = r,. It is assumed that the loading temperature 7, causing the
thermal shock is maintained thereafter. In this case, the coefficients in Eq. (2) are iy = h; =0, hj = hy =1,
hy = h, hy = —T,, where £ is the ratio of the convective heat-transfer coefficient between the composite tube
and the surrounding medium at » = r, and the thermal conductivity of the tube in the radial direction. A
typical value for heat convection to the air is # = 0.15 m™'.

In order to present the results, the following nondimensional quantities are used r* = (r — ry)/(r, — 11)
for the radial distance (through the thickness) and ¢* = ct/(r, — ry) for the nondimensional time. In the
following, the behavior of the elastodynamic thermal shock stresses which propagate through the wall as a
stress wave will be described.

In Fig. 1, the wave propagation of radial stress at the center of wall, »* = 0.5, is shown during the early
moments after heating. The stress wave is initiated at the inside surface, where the loading is applied, and
reflected at the boundary surface after propagating through the wall. The propagation and reflection of the
stress wave lead to stress reversions throughout the thickness. The magnitude and direction of stress de-
pends on the location of the wave front. The radial stress is periodically changed from compression to
tension or from tension to compression. The stress pattern varies as time passes due to interferences of
waves. This effect increases with time. In this figure, it is noted that the tensile radial stress exists until the
thermally induced disturbance reaches the location, »* = 0.5, because the region where the temperature has
not conducted yet, plays the role of a “rigid band” in the sense that this region has not been disturbed in the
first phase yet. Dynamic radial stress always switches from tension to compression at the location »* = 0.5,
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Fig. 1. The propagation of the radial stress wave, o,.(r,t), at 7 = 0.5, with the normalized time, which is defined as * = ct/(r, — ry).
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Fig. 2. The variation of the hoop stress, ag(r,?), at 7 = 0,0.5,1.0, with the normalized time, * = ct/(r, — ry).

even though the quasi-static radial stress always stays in compression. Fig. 2 shows the tangential (hoop)
stress at different locations. The maximum stress is obtained at the inside surface of a hollow cylinder. The
hoop stress at * = 0.5 shows the characteristic stress wave propagation with its periodical variation. This
figure shows that the hoop stress at each location stays in compression. This fact is true in the initial phase
after the loading since this is applied at the inside surface of a hollow cylinder. The axial stress response in
the early phase is presented in Fig. 3. Similar behaviors are shown. The largest axial stress exists at the
inside boundary right after the heating.

The above results, as explained earlier, are presented for a realistic inertia parameter y which is defined as
7 = K/c(r, — 1) and required a very small stepsize of time, less than 10> to 10~ for acceptable computing
results. Therefore, the above results show more precisely the behavior of thermal shock stress wave
propagation and reflection through the wall. The stress discontinuity is well shown in those figures. This
time step computation could not be done without high performance computer resources. A detailed dis-
cussion about this point is also provided by Tsui and Kraus (1965) and Zaker (1969).

As an alternative validation for the above results, which were presented for a realistic inertia parameter,
the following was done. The temperature history in terms of another nondimensionalized time ¢/ =
Kt/(r, — r1)2 is given in Fig. 4 at different locations. The corresponding actual time of #* is much less than
that of 7. It is known that temperatures at each location are fully delivered quickly after the loading. The
hoop stress response in nondimensional time ¢ at the locations 7* = 0,1 is shown in Fig. 5. An inertia
parameter y = 1/5, is used to see inertia effects (Tsui and Kraus, 1965; Zaker, 1969). This inertia parameter
is not realistic, but was used in these earlier studies. The dynamic effect as seen in Fig. 1 remains even in this
manner. The validity of the results in Fig. 5 is verified by comparison with results from these earlier studies.
The thermal shock stress behavior is well shown and it has similar patterns as those in (Sumi and Ito’s 1993)
study. Fig. 5 shows the thermal shock stress when the inertia parameter is set to y = 1/5, which is an
unrealistically large value.
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Fig. 4. The temperature history, T(r,¢), as a function of the normalized time, ¢/ = Kz/(r, — rl)z, at the locations »* = 0,0.5, 1.0.
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Fig. 5. The hoop stress variation, agy(r, ), with normalized time, ¢/ = Kt/(r, — ry )2, at the locations * = 0,1.0. A large (unrealistic)
inertia parameter ) = K /c(r, —ry) = 1/5 is used.

In order to complete this study from the early moment after the loading to the time that the temperature
reaches to quite a steady state in any location, dynamic stresses are presented in terms of a nondimensional
time ¢ with a realistic inertia parameter. Displacements at different locations are shown in Fig. 6. Dis-
placements are seen to vary uniformly, but their derivatives show some variations as shown in Figs. 6-8. As
expected, the points at »* = 0 move inward of the cylinder, while the points at »* = 1 move outward. All
these dynamic displacements essentially oscillate around the quasistatic values. The time history of hoop
stress at different locations * = 0, 0.5, 1 is plotted in Fig. 7. The maximum hoop stress is obtained at »* = 0,
which is the inside bounding surface. It is always compressive. The quasi-static hoop stress at »* = 0.5 varies
from compression to tension. Fig. 8 is for the time history of axial stress at different locations. It is in-
teresting that the axial stress at the inside surface varies from the largest value at the initial stage to a
smaller one. Thus, this axial stress should be watched since cylindrical structures made by circumferentially
filament wounding would be inherently weak in the axial direction. The significance of stress variation with
time is seen in all stress components and is particularly noticeable for the hoop stress at the inner wall of
cylinder, r* = 0.

4. Summary

The elastodynamic solution for thermal shock stresses in an orthotropic cylindrical shell due to heat
transfer into/from a medium (e.g. fluid) at a constant temperature is obtained. The stress wave propagation
phenomenon is clearly shown. It is found that the dynamic contribution combined with the thermal and
material orthotropy cannot be neglected on the thermoelastic stress response (variation) when the heating is
applied rapidly. In other words, orthotropic properties in addition to inertia effects on disturbance should
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A smaller, realistic value of the inertia parameter 7 is used.
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Fig. 7. The time history of the hoop stress, agy(r,?), at ¥* = 0,0.5, 1.0.
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Fig. 8. The time history of the axial stress, o..(r,?), at r* = 0,0.5,1.0.

be considered. Differences between quasi-static and dynamic stresses are clear in all stress components.
These dynamic contributions of stresses, which cannot be captured by a static or quasi-static analysis, could
play unexpected roles on the structure’s integrity. It is noted that a transient thermal stress analysis without
the dynamic contribution would arrive at the steady state rapidly even though at these time values the
dynamic stress components due to inertia effects would still remain. As is well known, the thermal de-
formation is largely influenced by the thermal expansion coefficients. Thus, needless to say, the thermal
expansion coefficients are very important factors, together with the orthotropic stiffness properties of the
material in thermo-elastic stress analyses.
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Appendix A

In the temperature distribution 7(r,¢) in Eq. (3), the coefficients d;, d, and d; used are expressed in terms
of

A =r1h2h1‘+r2h1h;+r1r2h2h§ ln(l"z/}”l)7 (Al)

as
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r2h1h§ — 7'2}13]11F F1V2h3h§ I"U"zhzh;
dy=——3 =7 =22 =3 A2
1 A ) 2 A ) 3 A ( )
The constants dy, and ds, are given in terms of
F}(OC,,) = [hTO(,,Jl (7'20(,1) — h;.]()(?‘zdn)] X {h3 [l’lTO(,,J] (l"zO(,,) — h;J()(VzOCn)]
_hg[hlocnjl (V]OCH) +h2J0(r10(,1)]}2, (A3)
Fy(o) = (7 o2 + 15" [y (r1ot) + haJo(r1)] = (0302 + W) [ty (ra0t) — BT (rat) ] (A.4)
as follows:
Fi(a,
day = RFM[hlanYl(rlan) + hYo(ro)], (A.5)
Fi(a,
ds, = négani [y ey (F106) + Bado(rio)]. (A.6)
It should be noted that the case of h, = hj = 0 is excluded.
Appendix B
The solution R,(r) in Eq. (22) has the coefficients
g 2ds (=D g +2g1(k +1)] (B.1)
T2 (k4 )P en (2k + 3) — ¢ '
— 1)t g2k2 Biw2cii (2k + 3
Ban: P ( 2) - 2 fkn_ Lok 11( 2 ) ) (BZ)
22k+ [(k =+ 1)'] [011(2/( =+ 3) — 022] [Cll(Zk + 3) — 022]
where
_ 2ds, 1 1 2ds,q,
ﬁcn - |:d4n _T (1 +§+ +H—1_ y()):l [qz+2511(k+ 1)] +Ta (B3)
where y, is the Euler constant.
Appendix C
The series expansion form of the Bessel functions is defined as follows:
J(x) = ZA,,,xz’”“, J o (x) = E:A_mxz’""'7 (C.1)
m=0 n=0
where
s (_l)m(1/2)2m+v ) _ (_l)m(1/2>2m—\
" mll(m+v+1)° o ml(m—v+1)°

The Hankel asymptotic expansions of the Bessel functions for large arguments are, when v is fixed and |z|
tends to infinity, described as

Ju(z) = /2/(nz)[P(v,z) cos y — O(v, z) sin y, (C2)
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Y.(z) = \/2/(nz)[P(v,z) sin y + O(v,z) cos y], (C.3)
where 7 =z — (v + 1)m and, with 4y denoted by p,
(v, 2k __=DE-9

kz a8y (C4)
S v2k+1> (h=1) (= 1)(e—9)(n~25)
DLV T w T amy (€2)

Appendix D

In the expression for the radial dynamic stress given by Eq. (71), the coefficients are

, - dD, (¢
Bu = (end + e+ 3 en P4 2D, 6 R, (D.1)
dD, (¢,
By = (ciila +enn)r "t Z {011 % CrlzD (& )} L(&)Ve (&), (D.2)
_ €3 —C13 €3 — 13 dD,(&ri) | e
Bis=ci3+ pE— (011 + 012) +7C“ "o Z,: |:Cll 4 + p D\x(éir)}ll(fi)%(état)a (D-3)

! c
Bl4 = _CIIUS (}"i) — %U;(l’}) + qacl[dl +d2 ln(rz/r,») +d3 ln(r,-/rl)]

dDV il o
- Z |:Cll # 2Dv(é ):| Uo (r>V0(£ia t)a (D4)
and
By = (ciy e ™ + Z {011 vleiri) C;?D»'(éir)]ll(éi)n(éi,t)Q;l(t)a (D.5)
Biy, = (i +en)r ™' + Z {011 ) Crl[z Dt’(éir>:| L(EV(&,0)9, (1), (D.6)
N €23 — C13 €23 — €13 dD,(&ri) | e ~1
B3, =ci3 +6’11 e (c11 + c12) +c“ —— Z {CnT-i- - —D,(&r) [L(E)V.(&E,0)82, (1),
(D.7)
Bl4n = _CllR:,(ri) - %RZ("';) + qu1 [d4nJ0(ran) + dSnYO(rOCn)]
3 [en A e e gy e ;0 (D3)
i 11 dr 7 v Gi n n\%is n ) .

Kotﬁt

where the inverse of €,(¢) can be written as Q,'(z) = e¥%" and the time-dependent terms are described by
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B (D.9)

(¢&;sincéit — 1)

Ky(éiut) = N(f)

Similarly, the definitions for B; and B,, of the other expressions can be evaluated if ¢, ¢j; and c¢3 are
replaced by Ca1, C22 and (6X) and by C31, C32 and C33.
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